The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Short-Term Load Forecasting Based on EMD-Bayes-SVR Combined Model
Pages:  64-71
Year: Issue:  12
Journal: IT Age

Abstract: 短期电力负荷是电力供需平衡的关键,针对短期电力负荷预测精度问题,文中提出了EMD(Empirical Mode Decomposition)-Bayes-SVR(Support Vector Regression)组合预测模型,即将原始电力负荷序列通过EMD方法分解为若干个IMF(Intrinsic Mode Function)和1 个Res(Residual),依据Hurst指数将各IMF重构为高频分量、低频分量和残差分量,利用贝叶斯优化算法对SVR进行参数寻优,将寻优得到的最佳参数带入SVR并对重构后的3 个分量分别进行预测,将3 个分量的预测值相加得到最终预测结果.以美国内布拉斯加州的历史电力负荷数据为例,建立8 种单一预测模型和7 种组合预测模型作为参照模型,对该地的电力负荷序列进行预测.实验结果表明,EMD-Bayes-SVR组合预测模型能够有效预测短期电力负荷的变化趋势,其MAE(Mean Absolute Error)、RMSE(Root Mean Square Error)和MAPE(Mean Absolute Percentage Error)这3 种误差评价指标数值相对于SVR模型分别降低了29.84%、32.05%和22%,并显著低于其它参照模型.
Related Articles
No related articles found