The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Review and Prospect of Multi-Label Text Classification Research
Pages:  28-48
Year: Issue:  18
Journal: Computer Engineering and Applications

Abstract: 文本分类(TC)是自然语言处理(NLP)领域的重要基础任务,多标签文本分类(MLTC)是TC的重要分支.为了对多标签文本分类领域进行深入了解,介绍了多标签文本分类的概念和流程.将近年来多标签文本分类方法划分为基于传统机器学习方法和基于深度学习方法,梳理了多标签文本分类领域常用的数据集和评价指标,分析了部分多标签文本分类模型的优势和存在问题.介绍了多标签文本分类的研究方向:标签相关性、特定标签特性、类别不平衡、标签丢失和标签压缩.对多标签文本分类的难点和未来的发展方向进行了总结展望.
Related Articles
No related articles found