The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
Fault diagnosis of rolling bearings based on the resonance-based sparse signal decomposition with optimal Q-Factor
Author(s): 
Pages: 998-1005
Year: Issue:  6
Journal: Journal of Vibration Engineering

Keyword:  fault diagnosisrolling bearingresonance-based sparse signal decompositionquality factorgenetic algorithm;
Abstract: 滚动轴承常常在复杂工况下工作,当滚动轴承出现局部故障时,其振动信号中除了与故障信息相关的周期性瞬态冲击成分外,还包含轴转频等谐波成分和背景噪声.因此,在滚动轴承故障早期,对滚动轴承振动信号直接进行包络解调分析往往效果不佳.针对上述问题,提出了基于最优品质因子信号共振稀疏分解的滚动轴承故障诊断方法.该方法首先以信号共振稀疏分解低共振分量的峭度最大为目标,利用遗传算法对信号共振稀疏分解方法的品质因子进行优化,得到最优品质因子;然后利用最优品质因子对轴承振动信号进行信号共振稀疏分解,得到高共振分量和低共振分量;最后对低共振分量进行希尔伯特解调分析,提取轴承故障特征频率,进而诊断滚动轴承故障.仿真信号和试验信号的分析结果表明,该方法能有效提取轴承故障振动信号中的冲击成分,诊断轴承故障.
Related Articles
No related articles found