The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
Application of continuous hidden semi-Markov model in bearing performance degradation assessment
Author(s): 
Pages: 613-620
Year: Issue:  4
Journal: Journal of Vibration Engineering

Keyword:  fault prognosisbearingCHSM Mfrequency band energyperformance degradation assessment;
Abstract: 连续隐半M arkov模型(Continuous hidden semi-Markov model,CHSMM)是隐Markov模型(Hidden Mark-ov model,HMM)的一种扩展形式,可用于时间序列过程的动态建模.通过加入状态分布参数并对多组观测值进行连续化,可加强模型对新观测值的处理能力以及对状态驻留时间的建模能力.利用该方法建立了轴承性能退化的评估模型.首先,分析振动信号并提取频带能量作为退化特征;然后将正常状态下的特征样本作为模型的观测值对CHSMM进行训练;最后将待测的特征样本输入模型,得到待测样本相对于所建立正常模型的输出概率,作为轴承性能退化状态的标志.轴承疲劳寿命试验结果表明:所提的评估模型能较好地刻画轴承性能退化的过程,并能在早期对轴承的性能退化做出预警.
Related Articles
No related articles found