The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Fault diagnosis based on deep knowledge model of signed directed graph in power plant thermal system
Author(s): 
Pages: 79-83
Year: Issue:  5
Journal: JOURNAL OF NORTH CHINA ELECTRIC POWER UNIVERSITY

Keyword:  电站热力系统故障诊断符号有向图定性推理;
Abstract: 鉴于符号有向图(Signed Directed Graph,SDG)深层知识模型的推理方法是一种完备的揭示系统故障的有效方法,提出将基于SDG的方法应用于电站热力系统的故障诊断中.应用该方法首先建立了除氧器系统的SDG模型,然后根据各个故障根源得出系统的子SDG模型,最后根据这些子图导出除氧器的故障诊断规则库.诊断时,通过将系统变量的定量值转换为定性值,将实际故障工况与所建立的故障规则进行比较,得到故障源的定性诊断结果.案例研究表明,该方法具有较好的解释性和诊断的快速性,且能有效解决仿真培训过程中误操作自诊断问题.
Related Articles
loading...