The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
High voltage transmission line fault classification based on fuzzy logic and Support Vector Machines
Author(s): 
Pages: 13-17
Year: Issue:  3
Journal: ELECTRIC POWER

Keyword:  输电线故障类型支持向量机模糊逻辑;
Abstract: 高压输电线路故障类型的正确识别是输电线路故障定位和事故分析的前提保证,探求有效、实用的识别方法是有意义的.在对高压输电线路故障类型识别原理及实现方法进行总结分析的基础上,提出采用小样本高泛化能力的支持向量机(Support Vector Machines,即SVM)算法,并结合适于处理具有不确定线性划分关系问题的模糊集理论,来完成高压输电线路的故障分类器,实现了使期望风险最小化的最优分类.仿真结果表明:所提方法判别过程简单、清晰,能正确识别高压输电线路的故障类型,而且还不受输电线路系统模型结构的限制,具有较强的通用性和实用性.提出的基于模糊逻辑和SVM的高压输电线路故障类型识别新方法,克服了常规线性分类方法的局限性,实现了输电线路故障模式空间的非线性可分,解决了高压输电线路故障模式识别的根本性问题.
Related Articles
No related articles found