The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Identification of Failure Modes of Rolling Bearings Based on K-L Transform and Radial Basic Function Nerval Networ
Author(s): 
Pages: 4-8
Year: Issue:  11
Journal: CONSTRUCTION MACHINERY AND EQUIPMENT

Keyword:  滚动轴承振动信号K-L变换RBF神经网络模式识别;
Abstract: 径向基函数(RBF)神经网络是一种三层前馈型神经网络,它具有较强的非线性函数逼近能力和分类能力.根据径向基函数神经网络的优点,在对滚动轴承振动信号故障特征分析的基础上,应用K-L变换将所测取的振动相关特征矢量转化为独立的特征矢量,利用其主特征值建立径向基函数神经网络,并用该网络对滚动轴承的故障模式进行了识别.理论和试验证明了该方法的有效性,且具有较高的识别精度.
Related Articles
loading...