The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
Short-Term Load Forecasting Model and Method for Power System Based on Complementation of Neural Network and Fuzzy Logic
Author(s): 
Pages: 53-58
Year: Issue:  10
Journal: TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY

Keyword:  短期负荷预测信息熵神经网络模糊逻辑;
Abstract: 根据电力系统短期负荷预测的特点,采用神经网络与模糊逻辑互补的方法建立了负荷预测模型.通过粗糙集理论中的信息熵概念对神经网络的输入参数进行了筛选,以与待预测量相关性大的参数作为输入,不仅减少了神经网络的工作量,缩短了计算时间,而且提高了预测的准确性;在神经网络中,通过引进动量系数和遗忘系数优化网络,提高了ANN的收敛速度;在模糊逻辑中,充分利用了人们对负荷变化取得的主观经验,引进不平均隶属函数,来反映负荷对温度的敏感性.
Related Articles
No related articles found