The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Chaotic time series multi-step direct prediction with partial least squares regression
Author(s): 
Pages: 611-615
Year: Issue:  3
Journal: JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS

Keyword:  chaotic series predictionmulti-steplocal modelpartial least squares.;
Abstract: Considering chaotic time series multi-step prediction,multi-step direct prediction model based on partial least squares(PLS)is proposed in this article,where PLS,the method for predicting a set of dependent variables forming a large set of predictors,is used to model the dynamic evolution between the space points and the corresponding future points.The model can eliminate error accumulation with the common single-step local model algorithm,and refrain from the high multi-collinearity problem in the reconstructed state space with the increase of embedding dimension.Simulation predictions are done on the Mackey-Glass chaotic time series with the model.The satisfying prediction accuracy is obtained and the model efficiency verified.In the experiments,the number of extracted components in PLS is set with Cross-validation procedure.
Related Articles
loading...