The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
Hot Deformation and Dynamic Recrystallization Behavior of Austenite-Based Low-Density Fe–Mn–Al–C Steel
Author(s): 
Pages: 441-449
Year: Issue:  5
Journal: Acta Metallurgica Sinica

Keyword:  Fe–Mn–Al–C steelHot deformationDynamic recrystallizationYield-point-elongation-like effect;
Abstract: The hot deformation and dynamic recrystallization(DRX) behavior of austenite-based Fe–27Mn–11.5Al–0.95 C steel with a density of 6.55 g cm-3were investigated by compressive deformation at the temperature range of900–1150 °C and strain rate of 0.01–10 s-1. Typical DRX behavior was observed under chosen deformation conditions and yield-point-elongation-like effect caused by DRX of d-ferrite. The flow stress characteristics were determined by DRX of the d-ferrite at early stage and the austenite at later stage, respectively. On the basis of hyperbolic sine function and linear fitting, the calculated thermal activation energy for the experimental steel was 294.204 k J mol-1. The occurrence of DRX for both the austenite and the d-ferrite was estimated and plotted by related Zener–Hollomon equations. A DRX kinetic model of the steel was established by flow stress and peak strain without considering dynamic recovery and d-ferrite DRX. The effects of deformation temperature and strain rate on DRX volume fraction were discussed in detail. Increasing deformation temperature or strain rate contributes to DRX of both the austenite and the d-ferrite, whereas a lower strain rate leads to the austenite grains growth and the d-ferrite evolution, from banded to island-like structure.
Related Articles
No related articles found