The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
Characterization of the Hot Deformation Behavior of Cu–Cr–Zr Alloy by Processing Maps
Author(s): 
Pages: 422-430
Year: Issue:  5
Journal: Acta Metallurgica Sinica

Keyword:  Cu–Cr–Zr alloyHot deformation behaviorStrain hardening rateConstitutive equationProcessing map;
Abstract: Hot deformation behavior of the Cu–Cr–Zr alloy was investigated using hot compressive tests in the temperature range of 650–850 °C and strain rate range of 0.001–10 s-1. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a function of strain rate and deformation temperature. The critical conditions for the occurrence of dynamic recrystallization were determined based on the alloy strain hardening rate curves. Based on the dynamic material model, the processing maps at the strains of 0.3, 0.4 and 0.5were obtained. When the true strain was 0.5, greater power dissipation efficiency was observed at 800–850 °C and under0.001–0.1 s-1, with the peak efficiency of 47%. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Based on the processing maps and microstructure evolution, the optimal hot working conditions for the Cu–Cr–Zr alloy are in the temperature range of 800–850 °C and the strain rate range of 0.001–0.1 s-1.
Related Articles
No related articles found