The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Bookmark and Share
Detection method for storage time of tea based on electronic nose technology
Pages: 558-562
Year: Issue:  5
Journal: Journal of Southwest University for Nationalities(Natrual Science Edition)

Keyword:  茶叶电子鼻贮藏时间BP神经网络;
Abstract: 主要探索茶叶贮藏时间的检测方法.以黄山毛峰茶为研究对象,利用电子鼻对7个不同贮藏时间下的干茶叶进行检测.根据电子鼻传感器阵列响应特点选取了特征变量,以特征变量为自变量,以茶叶贮藏时间为因变量,建立了茶叶贮藏时间的BP神经网络预测模型.通过测试样本对模型进行实验分析,结果表明:该模型对于7个不同贮藏时间茶叶样本最大预测误差为42.1天;预测误差超过10天的最大样本数为5个,占总样本数的7.14%.验证了所建立的茶叶贮藏时间BP神经网络预测模型的可行性.
Related Articles
No related articles found