The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Application of particle swarm optimization in feature selection of thyroid nodules
Author(s): 
Pages: 476-479
Year: Issue:  5
Journal: Medical Journal of National Defending Forces in Southwest China

Keyword:  thyroid nodulesultrasonic imageparticle swarm optimizationfeature selection;
Abstract: 目的 甲状腺结节超声图像存在丰富的形态和纹理等图像特征.本研究旨在降低分类器的训练成本、提升分类性能,以提高结节良恶性的诊断准确度,更好地理解关键特征.方法 将粒子群优化算法引入特征选择中,对77个结节图像特征进行选择,并使用支持向量机对甲状腺结节的良恶性进行分类识别,以构建计算机辅助诊断系统.结果 训练得到的分类器精度达到98.20%性能超过了常规特征选择方法得到的同类分类器精度;结节的紧致度、平滑度等在甲状腺结节良恶性鉴别中起到关键作用.结论 采用粒子群优化进行甲状腺结节分类精度高,超过了常规特征选择方式的分类精度,应该进一步研究其临床应用价值.
Related Articles
loading...