The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login
|
Sign Up
|
Oriprobe Inc.
|
Feed
Home
Journals
Order
TOC Alerts
Subscription
Products & Services
Pricing
FAQ
About
Journal Articles
Laws/Policies/Regulations
Companies/Products
Title, abstract, keywords:
Combined Search
Advanced Search
Pay per View through On Demand Search
Package:
ALL
Astro-Earth Science
Agriculture
Physics
Mathematics
Arts & Humanities
Medline Collection
Health/Medicine/Biology
Chemistry/Chemical Engineering
CAOD
English Journals
Traditional Chinese Medicine
NPC CPPCC Journals
China Defense and Military Sciences
Author:
Journal / Book Title:
Year:
Volume:
Issue:
Accelerated Structure Learning for General Multi-dimensional Bayesian Network Classifier
Author(s):
FU Shun-kai
,
LI Zhi-qiang
Pages:
262
-
267
Year:
2015
Issue:
6
Journal:
Computer Science
Keyword:
Multi-dimensional classification
;
Bayesian network
;
Multi-dimensional Bayesian network classifier
;
Markov blanket
;
Abstract:
作为概率图模型,无限制多维贝叶斯网络分类器(GMBNC)是贝叶斯网络(BN)应用在多维分类应用时的精简模型,只包含对预测有效的局部结构.为了获得GMBNC,传统方法是先学习全局BN;为了避免全局搜索,提出了仅执行局部搜索的结构学习算法DOS-GMBNC.该算法继承了之前提出的IPC-GMBNC算法的主体框架,基于进一步挖掘的结构拓扑信息来动态调整搜索次序,以避免执行无效用的计算.实验研究验证了DOS-GMBNC算法的效果和效率:(1)该算法输出的网络质量与IPC-GMBNC一致,优于经典的PC算法;(2)在一个包含100个节点的问题中,该算法相对于PC和IPC-GMBNC算法分别节省了近89%和45%的计算量.
Citations
System Exception
Related Articles
loading...