The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit
later.
We apologize for any inconvenience caused
Image Denoising Based on Anisotropic Diffusion and Sparse Representation in Shearlet Domain
Author(s): WU Yi-quan, LI Li, TAO Fei-xiang
Pages: 221-
228
Year: 2014
Issue:
3
Journal: Journal of Applied Sciences
Keyword: image deniosing; non-subsampled shearlet transform (NSST); kernel anisotropic diffusion (KAD); K-singular value decomposition (K-SVD); sparse representation;
Abstract: 为了更有效地去除图像噪声,同时更好地保留图像边缘细节信息,提出了一种基于shearlet域各向异性扩散和稀疏表示的图像去噪方法.首先对含噪图像进行非下采样shearlet变换(nonsubsampled shearlettransform,NSST),将图像分解为低频分量和多个高频分量.低频分量中包含图像信号的主要能量以及少量的噪声,而高频分量中含有大部分噪声和图像边缘信息.然后,利用K-奇异值分解(K-singular value decomposition,K-SVD)算法去除低频分量中的噪声,各个方向的高频分量则通过核各向异性扩散(kernel anisotropic diffusion,KAD)算法进行去噪.最后,对处理过的低频分量和高频分量进行非下采样shearlet反变换(inverse nonsubsampled shearlet transform,INSST),得到重构图像,从而有效地去除图像噪声,保留图像边缘细节.实验结果表明,与小波扩散去噪法、shearlet硬阈值去噪法、K-SVD稀疏去噪法、小波域稀疏去噪法相比,该方法的去噪能力更强,并能更好地保留图像纹理细节特征,改善图像视觉效果.
Citations
No citation found