The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
A quantitative explanation of carbonate microfacies based on conventional logging data:a case study of the Mishrif Formation in north Rumaila oil field of Iraq
Author(s): 
Pages: 1088-1099
Year: Issue:  6
Journal: Acta Petrolei Sinica

Keyword:  porous carbonatemicrofaciesBayes stepwise discriminantlogging discriminating templateMishrif Formation;
Abstract: 基于常规测井资料分析的沉积微相精细识别方法在碎屑岩中有着很好的识别能力和预测能力.但是,碳酸盐岩强烈的成岩作用和成岩后改造,使得在碎屑岩体系中行之有效的主要基于自然伽马曲线(GR)、自然电位曲线(SP)和深、浅电阻率曲线(RD、RS)的交会图和模糊聚类沉积微相测井识别方法在碳酸盐岩沉积微相划分中遇到挑战.波斯湾地区伊拉克Rumaila油田主力储层白垩系Mishrif组为典型的沉积孔隙型碳酸盐岩储层.在北Rumaila油田选取Mishrif组岩心、测井和录井等地质资料较为完备的8口代表性钻井作为标准井,对其进行沉积相、亚相和微相的精细刻画,进而提取标准井中自然伽马(GR)、中子(CNL)和密度(DEN)3条常规测井曲线与沉积微相相匹配的关键参数(曲线均值和GR曲线的离差平方和),建立测井相-沉积微相的定量转换关系.在此基础上,采用Bayes逐步判别法建立了基于常规测井的北Rumaila油田Mishrif组碳酸盐岩沉积微相的测井判别模型,并利用该模型实现了对未建模井沉积微相的准确标定.与交会图法和模糊聚类法相比,Bayes逐步判别法能够整合更多的测井参数,进而提供更好的适应于沉积型碳酸盐岩的沉积微相测井定量识别方法.
Related Articles
No related articles found