The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
ji yu lu bang ls-svm zai guang fu fa dian yu ce zhong de ying yong
Author(s): 
Pages: 1166-1167+1170
Year: Issue:  5
Journal: Computer Measurement & Control

Keyword:  PV predictionrobust learningleast square support vectorphotovoltaic power generation;
Abstract: 随着对光伏发电系统不断的应用研究,光伏发电预测技术成为又一重要的课题;光伏发电系统对于国家电网来说是一个不可控的能源,其具有的随机性会对大电网的稳定性造成一定的影响;因此,准确的光伏发电预测对电力系统的运行调度具有深远的意义;文章通过光伏发电历史发电量、太阳能辐射量和温度序列按照时间序列建模方案建立了基于鲁棒学习的最小二乘支持向量机模型;同时,验证了该模型的可行性以及有效性;预测结果表明,该模型具有较高的精度,能够解决光伏发电随机化问题。
Related Articles
No related articles found