The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
ji yu pca-rbf shen jing wang luo de gong ye lie jie lu shou lv zai xian yu ce ruan ce liang fang fa
Author(s): 
Pages: 194-197
Year: Issue:  S1
Journal: Journal of System Simulation

Keyword:  process modelingsoft-sensingneural networksprincipal component analysis(PCA)pyrolysis furnaceethylene process;
Abstract: 为了解决工业裂解炉收率在线预测的问题,研究了基于PCA(principal component analysis)-RBF(radial basis function)神经网络模型的多输入多输出(MIMO)软测量方法及其在线校正技术。该方法由主元分析PCA、RBF神经网络和在线校正3部分组成,可以实现工业裂解炉收率的在线预测,具有实时性好、建模周期短、计算量小、校正方便等特点。本文给出的SRT-IV型工业裂解炉收率预测例子及其结果表明该软测量方法应用于工业裂解炉收率的在线预测是有效的。
Related Articles
No related articles found