The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login
|
Sign Up
|
Oriprobe Inc.
|
Feed
Home
Journals
Order
TOC Alerts
Subscription
Products & Services
Pricing
FAQ
About
Journal Articles
Laws/Policies/Regulations
Companies/Products
Title, abstract, keywords:
Combined Search
Advanced Search
Pay per View through On Demand Search
Package:
ALL
Astro-Earth Science
Agriculture
Physics
Mathematics
Arts & Humanities
Medline Collection
Health/Medicine/Biology
Chemistry/Chemical Engineering
CAOD
English Journals
Traditional Chinese Medicine
NPC CPPCC Journals
China Defense and Military Sciences
Author:
Journal / Book Title:
Year:
Volume:
Issue:
qiu he mo xing de zui zhong jie jue
Author(s):
CAO Ling
,
ZUO Zhengsong
Pages:
43
-
45
Year:
1998
Issue:
4
Journal:
Journal of Higher Correspondence Education(Natural Science Edition)
Keyword:
球盒模型
;
分组数
;
最终解
;
方案数
;
递推关系
;
分组问题
;
第二类Stirling数
;
单元素
;
空盒
;
母函数
;
Abstract:
1球盒模型的简单介绍描述离散对象组合成群现象的是球盒模型。所谓球盒模型,就是将n个球放到m个盒子里,依据球和盒子是否有区别以及是否允许空盒而存在23-8种状态。引人了第二类斯特林(Stirling)数S(n,m)和协同组合数CZ-C(m,n)后,前6种状态得到园满的解决,其方案计数列下表。n个有区别的球放到m个相同的盒子,要求无一空盒,其不同的方案数用S(n,m)表示,称为第二类斯特林(Stirling)数。第二类Stirling数S(n,m)有着良好的性质和递推关系。球盒模型的最后两种状态,仅是用母函数G(X)表出,要展开母函数G(X)才能得到相应的X"项系数,其计算非常麻烦且容易出错,因而
Citations
No citation found
Related Articles
loading...