The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
Short-term load forecasting based on phase space reconstruction and Chebyshev orthogonal basis neural network
Author(s): 
Pages: 95-99
Year: Issue:  24
Journal: Power System Protection and Control

Keyword:  混沌理论相空间重构Chebyshev神经网络短期负荷预测;
Abstract: 电力系统短期负荷数据具有明显的混沌特性.在讲述混沌中相空间重构的相关理论后,计算了算例中需要用到的延迟时间和嵌入维数.根据正交多项式优越的泛化和预测性能,在简单介绍Chebyshev正交基函数后,构建了单输入Chebyshev正交基神经网络预测模型.由于重构后的相空间中每个相点的分量个数不止一个,故所构建的单输入预测模型无法满足要求.为此,在单输入的基础上,设计了基于相空间重构的多输入Chebyshev正交基神经网络动态预测模型,将该模型运用到短期负荷预测中,取得了很高的精度和很好的预测效果.
Related Articles
No related articles found