The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login
|
Sign Up
|
Oriprobe Inc.
|
Feed
Home
Journals
Order
TOC Alerts
Subscription
Products & Services
Pricing
FAQ
About
Journal Articles
Laws/Policies/Regulations
Companies/Products
Title, abstract, keywords:
Combined Search
Advanced Search
Pay per View through On Demand Search
Package:
ALL
Astro-Earth Science
Agriculture
Physics
Mathematics
Arts & Humanities
Medline Collection
Health/Medicine/Biology
Chemistry/Chemical Engineering
CAOD
English Journals
Traditional Chinese Medicine
NPC CPPCC Journals
China Defense and Military Sciences
Author:
Journal / Book Title:
Year:
Volume:
Issue:
Urban Road Traffic Condition Pattern Recognition Based on Support Vector Machine
Author(s):
YU Rong
,
WANG Guo-xiang
,
ZHENG Ji-yuan
,
WANG Hai-yan
Pages:
130
-
136
Year:
2013
Issue:
1
Journal:
Journal of Transportation Systems Engineering and Information Technology
Keyword:
城市道路交通
;
交通状态
;
模式识别
;
支持向量机
;
LiBSVM
;
Abstract:
城市道路交通状态识别?现代智能交通系统的重要组成部分,是交通智能控制、诱导和协同系统的基础.基于支持向量机建立车流量、平均速度和占有率的三维反映空间,以堵塞流、拥挤流、平稳流和顺畅流为标签对道路交通状态进行分类;并在MATLAB平台下利用LiBSVM工具包进行实验分析,对SVM各种核函数的分类效果进行比较研究,实现了支持向量机技术的交通状态模式识别.结果表明:选择的指标能很好地反映交通状态的特征,SVM核函数可以以较高的分类精度区分开交通流的状态识别,数据的归一化对分类的结果具有重要的影响.
Citations
No citation found
Related Articles
loading...