The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
Unscented Kalman Filter algorithm for on-line identification of parameters of induction motor model
Author(s): 
Pages: 84-88
Year: Issue:  24
Journal: Power System Protection and Control

Keyword:  无味卡尔曼滤波无味变换感应电动机在线辨识非线性估计;
Abstract: 针对高阶非线性动态系统参数估计的非线性特征,介绍了无味卡尔曼滤波(UKF)算法.在给出了UKF的算法描述的基础上,从一般意义上讨论了无味变换(UF)仅用有限的参数来近似随机变量的概率统计特征,避免了传统的通过线性化来估计非线性系统而带来的误差,进而将该算法用于电力系统感应电动机动态负荷模型的参数估计.算例利用某电网同步相量测量(PMU)采集数据,利用所提算法实时跟踪模型参数,结果表明该算法能够实时有效地辨识出感应电动机负荷模型的参数,有望在实际工程中得到应用.
Related Articles
No related articles found