The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Blind Source Separation Algorithm Applying RBF Neural Network
Author(s): 
Pages: 165-168
Year: Issue:  10
Journal: Computer Simulation

Keyword:  径向基神经网络盲分离最大熵值法代价函数;
Abstract: 针对传统盲源分离算法的计算复杂问题,提出一种基于径向基(RBF)神经网络盲源分离算法,用K均值聚类算法对中心值和宽度值进行确定,用最大熵为代价函数来确定权值,所用的代价函数保证了网络的输出尽可能独立,使信号能正确地分离.仿真中,用于对线性混合信号进行盲源分离,并与最大熵(ME)算法进行比较.结果表明,盲源分离算法能减少分离时间和提高分离效率,并且能大大降低计算量,比ME算法更好.
Related Articles
loading...