The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Application of Telecom CustomerChurn Prediction Based on Improved Support Vector Machine
Author(s): 
Pages: 329-332
Year: Issue:  7
Journal: Computer Simulation

Abstract: 电信流失客户数据精确预测是挽留客户的有效手段.电信业的管理中对收费、投诉、业务受理等问题,显然是一种典型的非平衡样本,传统用标准的支持向量机没有考虑样本分布不平衡问题,虽然在样本数据平衡前提下具有较好的预测精度,但对于不平衡电信客户数据,预测精度大大下降.为提高预测精度,针对支持向量机处理不平衡样本时的缺陷,提出了基于代价敏感学习的支持向量机模型.模型利用代价敏感学习对不平衡样本集分别采用不同惩罚...
Related Articles
loading...