The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit
later.
We apologize for any inconvenience caused
APPLICATION OF IMPROVED SELF-CONFIGURING ARTIFICIAL NEURAL NETWORKS lO RESERVES ESTIMATION
Author(s): LI Ben-liang, SUN Yan, ZHANG Xi-hui, WEN Shi-hong
Pages: 391-
396
Year: 2000
Issue:
3
Journal: JOURNAL OF NANJING UNIVERSITY(NATURAL SCIENCE)
Keyword: BI算法; 网络因子; 隐层节点自构形; 储量评估;
Abstract: 在BP(Error Back-Propagation)算法基础上,采用BI(Back Impedance)算法,运用了自组织优化隐层节点数和自动优化网络因子的方法,使得人工神经网络ANN的计算速度、精度和柔韧性有所提高,且在微机上其操作变得更加容易.在勘探成熟的气藏中,按照天然气成藏理论,选取能够系统反映气藏的8个储量评估参数,进行网络学习,建立储量评估模型.应用所建的网络模型对正处于勘探阶段的气藏进行了很好的储量等级识别,同时,利用改进后网络精度高的特点,尝试着进行了储量估算,获得较好的效果.这种改进的ANN为天然气勘探提供了一种新的储量评估方法.
Citations
No citation found