The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Candidate Pruning Based Density Subspace Clustering
Author(s): 
Pages: 623-628
Year: Issue:  7
Journal: Journal of Tianjin University

Keyword:  高维度数据子空间聚类数据挖掘;
Abstract: 针对目前子空间聚类算法存在精度差、效率低的问题,设计了一种子空间聚类算法DSUB.提出了裁剪候选对象的方法,减少了候选聚类对象的个数且对候选对象分组,使得待搜索的聚类簇只能是某个组的子集,可降低后续聚类处理的复杂度.此外,提出了新的邻域查询方法和抽样覆盖策略用以提高密度聚类的处理速度.实验结果表明:DSUB算法精度高,能够发现任意形状的聚类簇;计算复杂度与数据量呈线性关系;抗噪声性能强;聚类结果与...
Related Articles
loading...