The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login
|
Sign Up
|
Oriprobe Inc.
|
Feed
Home
Journals
Order
TOC Alerts
Subscription
Products & Services
Pricing
FAQ
About
Journal Articles
Laws/Policies/Regulations
Companies/Products
Title, abstract, keywords:
Combined Search
Advanced Search
Pay per View through On Demand Search
Package:
ALL
Astro-Earth Science
Agriculture
Physics
Mathematics
Arts & Humanities
Medline Collection
Health/Medicine/Biology
Chemistry/Chemical Engineering
CAOD
English Journals
Traditional Chinese Medicine
NPC CPPCC Journals
China Defense and Military Sciences
Author:
Journal / Book Title:
Year:
Volume:
Issue:
Text Classification Comparison Research
Author(s):
LI Xin
,
ZHANG Li-shuo
Pages:
44
Year:
2009
Issue:
5
Journal:
CD Tecnnology
Keyword:
Text classification
;
NaiveBayes(N B) K-nearestneighbor(KNN)
;
Support vector machines(SVM)
;
Abstract:
随着Intemet的不断发展,电子文本信息急剧增加,如何有效地组织和管理这些海量信息,并且能够快速准确地获得用户所需要的信息是当今信息科学技术领域的一大挑战,对电子文本进行有效管理的方法之一就是文本分类.文本分类是一项重要的智能信息处理技术,在信息过滤、信息检索、文本数据库和数字图书馆等方面极具应用价值.本文仅介绍贝叶斯、KNN和支持向量机等三种常用的分类方法,并进行了对比实验,,对这三种分类方法进行分析和比较.
Citations
No citation found
Related Articles
loading...