The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
Optimal algorithm of electric power system's short-term load forecasting based on radial function neural network
Author(s): 
Pages: 45-48
Year: Issue:  23
Journal: Relay

Keyword:  短期负荷预测交替梯度算法人工神经网络径向基函数实用性;
Abstract: 提出了一种交替梯度算法对径向基函数(RBF)神经网络的训练方法进行改进,并将之运用于电力系统短期负荷预测.交替梯度算法通过优化输出层权值和优化RBF函数的中心与标准偏差值来实现.改进的算法与传统梯度下降算法相比,具有更快的收敛速度和更高的预测精度.所构建的负荷预测模型综合考虑了气象、日类型等影响负荷变化的因素,并在预测形式上做了巧妙处理.预测结果表明改进的RBF网络算法具有一定的实用性.
Related Articles
No related articles found