The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Optimization method by combination of wavelet neural networks and genetic algorithm
Author(s): 
Pages: 1953-1960
Year: Issue:  11
Journal: Journal of Aerospace Power

Keyword:  小波神经网络Pareto遗传算法射流元件叶轮机械优化设计;
Abstract: 提出一种基于小波神经网络(简称WNN)与Pareto遗传算法相结合的优化方法,并用于内流的数值流场优化计算.小波神经网络由输入层、隐含层和输出层组成.在隐含层用Morlet小波母函数取代了误差反向传播(BP)神经网络中常用的Sigmoid激励函数.Pareto遗传算法具有很好的全局寻优能力和良好的优化效率,在通常情况下它总可以得到均匀分布的Pareto最优解集.典型算例表明:该算法快速、高效.能高精度的完成非线性函数的逼近与映射,其泛化能力很强.
Related Articles
loading...