The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
Maximum-entropy thresholding image segmentation method based on improved PSO algorithm
Author(s): 
Pages: 174-176,187
Year: Issue:  29
Journal: COMPUTER ENGINEERING AND APPLICATIONS

Keyword:  粒子群优化雁群线性递减惯性权重直方图;
Abstract: 图像分割是目标识别的首要和关键步骤.目前的图像分割方法有多种,其中阈值方法优点比较突出,但是采用闺值方法分割的关键是要能高效率地找到被分图像的最佳熵阈值.针对这一问题,将Geese-LDW-PSO算法的位置更新公式作了改进,即用当前种群的全局极值取代所有粒子的当前位置,并将之用于熵阈值图像分割中.仿真实验表明,该算法可以快速稳定地获得一幅图像的最佳分割阈值.仿真结果显示,该方法对车牌分割具有较好的性能.
Related Articles
No related articles found