The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
Short-term electric power load forecasting based on QPSO_RBF
Author(s): 
Pages: 6-9,46
Year: Issue:  18
Journal: POWER SYSTEM PROTECTION AND CONTROL

Keyword:  电力系统负荷预测径向基函数量子粒子群算法;
Abstract: 针对径向基函数(RBF)网络在电力系统短期负荷预测中存在的问题,提出一种量子粒子群优化(QPSO)算法训练 RBF 网络的方法,在确定网络隐含层节点个数后,将 RBF 网络各个参数编码成学习算法中的粒子个体进行优化,由此可在全局空间中搜索最优适应值的参数.用优化后的网络进行负荷预测,结果表明,该方法与传统的负荷预测方法相比,减少了训练时间并提高了预测精度,具有较好的应用前景.
Related Articles
No related articles found