The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit
later.
We apologize for any inconvenience caused
Hyperspectral Remote Sensing Estimation Models for the Biomass of Carex meyeriana in Honghe Nature Reserve
Author(s): LI Feng-Xiu, ZHANG Bai, LIU Dian-Wei, SONG Kai-Shan
Pages: 51-
59
Year: 2008
Issue:
1
Journal: WETLAND SCIENCE
Keyword: 高光谱; 乌拉苔草; 生物量; 植被指数; 洪河自然保护区;
Abstract: 尝试用不同方法构建洪河自然保护区湿地植被乌拉苔草(Carex meyeriana)的高光谱植被指数,建立水上鲜/干生物量高光谱估算模型,并比较了不同模型的反演精度.通过实测不同覆盖度和水深状况下乌拉苔草的冠层高光谱反射率与水上生物量的数据,采用高光谱可见光-近红外波段及其微分光谱波段(350~1 050 nm)逐波段构建FNDVI、FRVI、FDVI、FDNDVI、FDRVI、FDDVI植被指数,分别找出与水上鲜生物量和干生物量具有最佳相关性波段组合的植被指数,建立乌拉苔草水上生物量的最佳估算模型,并对比分析了反射率光谱植被指数(FNDVI、FRVI、FDVI)模型和微分光谱植被指数(FDNDVI、FDRVI、FDDVI)模型的反演精度.结果显示,微分光谱与乌拉苔草水上生物量的相关性比反射率光谱好;微分光谱植被指数与乌拉苔草水上生物量的相关性比反射率光谱植被指数好,尤其以微分光谱植被指数FDRVI与FDNDVI建立的二次函数模型反演乌拉苔草的水上鲜生物量和干生物量的效果最好,精度分别达74.9%、71.4%,其均方根误差分别为0.074 4和0.026 2,通过了p<0.01极显著验证.这表明,采用微分光谱植被指数FDRVI、FDNDVI对乌拉苔草水上鲜生物量和干生物量的估算可以取得较高的预测精度.
Citations
No citation found