The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
Discrimination of tea's quality level based on electronic tongue and pattern recognition
Author(s): 
Pages: 124-126
Year: Issue:  1
Journal: FOOD AND MACHINERY

Keyword:  电子舌KNN模式识别主成分分析茶叶;
Abstract: 目的:尝试利用电子舌技术来评判茶叶等级,以提高评判结果的客观性和公正性;方法:试验以4个等级的炒青绿茶为研究对象,对获取的电子舌数据.利用K最近邻域(KNN)模式识别方法建立茶叶等级质量的评判模型,在模型建立过程中,模型参数K和主成分因子数(PCs)通过交互验证的方法被优化;结果:在K=1和PCs=5时,所得到的模型最佳,模型交互验证识别率为97.5%,对预测集中样本进行验证时,预测识别率为100%;结论:电子舌技术与适当的模式识别方法相结合可以成功地评判茶叶的质量等级.
Related Articles
No related articles found