The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
Principal component feature extraction technology based on time-frequency analysis for battlefield acoustics signal
Author(s): 
Pages: 4-7
Year: Issue:  5
Journal: ELECTRONIC MEASUREMENT TECHNOLOGY

Keyword:  时频分析主成分分析(PCA)特征提取可分性测度;
Abstract: 信号的时频分布描述了信号从时域到频域的变换,较为全面地表征了信号的特征.主成分分析是统计学中分析数据的一种有效方法.本文将时频分析的方法应用于声目标的特征提取及分类;在保证信息的相对完整性的基础上,利用基于时频分析的主成分特征提取技术对4类战场目标的声信号进行了特征提取.经仿真实验验证,信号的时频分布较好地体现了各类声目标在时一频域的分布规律,主成分分析方法有效地压缩了数据量.结果表明,各目标的类间可分性测度值较大,具有良好的可分性.
Related Articles
No related articles found