The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
Support Vector Machine Models Optimized by Genetic Algorithm for Hourly Load Rolling Forecasting
Author(s): 
Pages: 148-153
Year: Issue:  6
Journal: TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY

Keyword:  支持向量机小时负荷预测遗传算法滚动预测;
Abstract: 利用支持向量机(SVM)和遗传算法(GA)建立24个不同的混合模型来对夏季24点负荷进行滚动预测.通过追加最新的负荷和天气信息来更新混合模型的输入,滚动预测下一小时负荷.利用SVM建立预测模型,利用GA自动选择SVM模型的参数.经过GA优化后的最终SVM模型用于滚动预测下一小时的负荷.研究实例表明,GA简化了SVM参数选择,优化了SVM模型;滚动预测效果要明显好于常规预测方法.
Related Articles
No related articles found