The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login
|
Sign Up
|
Oriprobe Inc.
|
Feed
Home
Journals
Order
TOC Alerts
Subscription
Products & Services
Pricing
FAQ
About
Journal Articles
Laws/Policies/Regulations
Companies/Products
Title, abstract, keywords:
Combined Search
Advanced Search
Pay per View through On Demand Search
Package:
ALL
Astro-Earth Science
Agriculture
Physics
Mathematics
Arts & Humanities
Medline Collection
Health/Medicine/Biology
Chemistry/Chemical Engineering
CAOD
English Journals
Traditional Chinese Medicine
NPC CPPCC Journals
China Defense and Military Sciences
Author:
Journal / Book Title:
Year:
Volume:
Issue:
Prediction of Flow Boiling Curves Based on Artificial Neural Network
Author(s):
WU Jun-mei
,
SU Guang-hui
Pages:
315
-
320
Year:
2007
Issue:
3
Journal:
ATOMIC ENERGY SCIENCE AND TECHNOLOGY
Keyword:
人工神经网络
;
流动沸腾曲线
;
压力
;
质量流速
;
进口欠热度
;
Abstract:
选用20世纪60年代以来的实验数据,应用人工神经网络分析入口欠热度、质量流速、压力等主要参数对沸腾曲线的影响.在整个传热区内,热流密度随入口欠热度的增加而增大;在过渡沸腾和膜态沸腾区,热流密度随质量流速的增加而增加;压力起重要的作用,除膜态沸腾区外,增加压力能强化传热.除泡核沸腾外,稳态和瞬态的流动沸腾曲线的差异很小.
Citations
No citation found
Related Articles
loading...