The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
The developments and applications of ensemble-based data assimilation methods
Author(s): 
Pages: 88-94
Year: Issue:  1
Journal: JOURNAL OF MARINE SCIENCES

Keyword:  数据同化集合数据同化EnKFEnKSEnSRFSEEK;
Abstract: 集合数据同化方法具有简洁概念化的公式和应用起来相对容易等优点,因此,它们获得了普及性的应用;近10年来集合数据同化方法已经得到了快速的发展.综述了包括集合卡尔曼滤波(EnKF,Ensemble Kalman Filter)、集合卡尔曼平滑(EnKS,Ensemble Kalman Smoother)、集合方均根滤波(EnSRF,Ensemble Square-Root Filter)和减秩卡尔曼滤波(SEEK, Singular Evolutive Extended Kalman Filter)等集合数据同化方法的研究进展状况.通过与其它数据同化方法的对比,总结出了这些方法的特点,探讨了我国在集合数据同化方法研究中存在的问题并展望了该方法的研究和应用前景.
Related Articles
loading...