The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Particle swarm algorithm based on simulated annealing to solve constrained optimization
Author(s): 
Pages: 136-140
Year: Issue:  1
Journal: JOURNAL OF JILIN UNIVERSITY ENGINEERING AND TECHNOLOGY EDITION

Keyword:  人工智能粒子群算法模拟退火约束优化问题双群体多样性;
Abstract: 针对复杂约束优化问题,提出一种基于模拟退火(SA)的粒子群(PSO)算法(SAPSO).该算法使粒子的飞行无记忆性,结合模拟退火算法重新生成停止进化粒子的位置,增强了全局搜索能力.同时采用双群体搜索机制,一个群体保存具有可行解的粒子,用SAPSO算法使粒子逐步搜索到最优可行解;另一个群体保存具有不可行解的粒子,并且可行解群体以一定的概率接受具有不可行解的粒子,有效地维持了群体的多样性.仿真结果表明:该算法能够快速准确地找到位于约束边界上(或附近)的最优解,具有较好的稳定性.
Related Articles
loading...