The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
Application of BP neural network and self-organizing competitive neural network to fault diagnosis of suck rod pumping system
Author(s): 
Pages: 107-110
Year: Issue:  2
Journal: ACTA PETROLEI SINICA

Keyword:  有杆抽油系统故障诊断示功图自动识别BP神经网络自组织竞争神经网络诊断模型;
Abstract: 将人工神经网络用于有杆抽油系统故障的自动识别.对江苏油田的实测示功图数据进行了预处理,利用Matlab 6.5进行编程,应用相同的数据对BP神经网络模型和自组织竞争神经网络模型的识别效率进行了对比.结果表明,由自组织竞争神经网络建立的模型对测试数据的正确识别率更高,识别效果稳定.因此,将自组织竞争神经网络应用于示功图的自动识别问题对实现有杆抽油系统故障诊断的自动化以及实现真正意义上的数字油田提供了一种有效途径.
Related Articles
No related articles found